The National Institutes of the Health (GM 29801 to PM) are thanked for their support of this research.

References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Egert, E. \& Sheldrick, G. M. (1985). Acta Cryst. A41, 262-268.
Gadol, S. M. \& Davis, R. E. (1982). Organometallics, 1, 1607-1613.
Kuehne, M. E. \& Bornmann, W. G. (1989). J. Org. Chem. 54, 3407-3420.
Kuehne, M. E., Zebovitz, T. C., Bornmann, W. G. \& Marko, I. (1987). J. Org. Chem. 52, 4340-4349.

Kutney, J. P., Beck, J., Bylsma, F., Cook, J., Cretney, W. J., Fuji, K., Imhof, R. \& Treasurywala, A. M. (1975). Helv. Chim. Acta, 58, 1690-1719.
Langlois, N., Gueritte, F., Langlois, Y. \& Potier, P. (1976). J. Am. Chem. Soc. 98, 7017-7024.
Magnus, P., Stamford, A. \& Ladlow, M. (1991). J. Am. Chem. Soc. Submitted.
Moncrief, J. W. \& Lipscomb, W. N. (1965). J. Am. Chem. Soc. 87, 4963-4964.
Moncrief, J. W. \& Lipscomb, W. N. (1966). Acta Cryst. 21, 322-331.
Potier, P. (1980). J. Nat. Prod. 43, 72-86.
Sheldrick, G. M. (1988). SHELXTL-Plus88. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1991). C47, 1566-1568

The Structure at 198 K of $(1 R, 5 R, 15 R, 16 R)$-5-Isopropenyl-2-methyl-1-[N-(trans-2-phenylcyclohexyloxycarbonyl)amino]-2-cyclohexene

By Vincent M. Lynch, H. Kenan Yaser, James K. Whitesell and Brian E. Davis
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA

(Received 3 October 1990; accepted 2 January 1991)

Abstract

Phenylcyclohexyl N-(5-isopropenyl-2-methyl-2-cyclohexan-1-yl)carbamate, $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{2}$, $M_{r}=353 \cdot 50, \quad$ orthorhombic, $\quad P 2_{1} 2_{1} 2_{1}, \quad a=$ 8.813 (2), $\quad b=9.043$ (2), $\quad c=25.643$ (5) $\AA, \quad V=$ $2043 \cdot 6$ (8) $\AA^{3}, \quad Z=4, \quad D_{x}=1.15 \mathrm{~g} \mathrm{~cm}^{-3} \quad(198 \mathrm{~K})$, Mo $K \alpha$ radiation, $\lambda=0.7107 \AA, \mu=0.6734 \mathrm{~cm}^{-1}$, $F(000)=768, \quad T=198 \mathrm{~K}, \quad R=0.0547$ for 1772 reflections [$F_{o} \geq 4 \sigma\left(F_{o}\right)$]. Molecules are H -bonded into infinite columns parallel to a. The H bond involves the NH group and the carbonyl O atom of the carbamate moiety with relevant parameters: $\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{O} 13$ (related by $\frac{1}{2}+x, \frac{1}{2}-y,-z$); $\mathrm{N} \cdots \mathrm{O}$ $2.910(5), \mathrm{H} \cdots \mathrm{O} 2 \cdot 11(5) \AA, \mathrm{N}-\mathrm{H} \cdots \mathrm{O} 159(4)^{\circ}$.

Experimental. The carbamate (1) was prepared from the adduct formed from (R)-limonene with the N sulfinylcarbamate of ($1 R$)-trans-2-phenylcyclohexanol (Whitesell \& Carpenter, 1987; Whitesell, Carpenter, Yaser \& Machajewski, 1990) by reaction with hexamethyldisilazane followed by thermal rearrangement (Yaser, 1990). X-ray structural analy-

(1)

0108-2701/91/071566-03\$03.00
sis was used to confirm the stereochemistry of the chiral center bearing nitrogen (Cl) and independently confirmed by internal comparison with the absolute stereochemistry of the trans-2phenylcyclohexanol used (Whitesell \& Lawrence, 1986). Crystals were obtained by slow evaporation from hexanes. The data crystal was a clear, colorless needle of approximate dimensions $0.11 \times 0.11 \times$ 0.29 mm ; the data were collected on a Nicolet $R 3$ diffractometer using a graphite monochromator and a Nicolet LT-2 low-temperature delivery system; lattice parameters were obtained from the least-squares refinement of 40 reflections with $20.2<2 \theta<23 \cdot 5^{\circ} ; \omega$ scan technique with a 2θ range from $4 \cdot 0-52 \cdot 5^{\circ}$ and a $1 \cdot 2^{\circ} \omega$ scan at $5-10^{\circ} \min ^{-1}(h=-11 \rightarrow 11, k=-12$ $\rightarrow 12, l=0 \rightarrow 32$). Two symmetry equivalent octants of data were collected ($h k l$ and $-h,-k, l$) yielding a total of 4788 reflections of which 2417 were unique ($R_{\text {int }}=0.0198$); four reflections ($11 \overline{4}, \overline{1} \overline{3} \overline{2}, \overline{1} 24,125$) were remeasured every 96 reflections to monitor instrument and crystal stability; a smoothed curve of the intensities of these check reflections was used to scale the data; the scaling factor ranged from 0.99121.014; the data were also corrected for Lp effects and absorption (based on crystal face measurements; transmission factor range was from $0.9832-0.9866$). The data reduction, absorption and decay correction were applied using the Nicolet XRD SHELXTL-Plus software package (Sheldrick, 1988); reflections having $F_{o}<4 \sigma\left(F_{o}\right)$ were considered unobserved (645
(c) 1991 International Union of Crystallography
reflections); the structure was solved by direct methods (Sheldrick, 1988) and refined by full-matrix least squares using SHELX76 (Sheldrick, 1976); 328 parameters were refined; non-H atoms were refined with anisotropic thermal parameters; all H -atom positions were obtained from a ΔF map and refined with isotropic thermal parameters. However, the geometry of the H atoms on methylene carbons, C 4 and C19, methyl carbon, C7, methine carbon, C16 and phenyl carbons, C24 and C25 did not refine well and were idealized ($\mathrm{C}-\mathrm{H}, 0.96 \AA$). The U for H 25 was fixed at $1.2 \times U_{\text {eq }}$ of C25. The function $\sum w\left(\left|F_{o}\right|\right.$ $\left.-\left|F_{c}\right|\right)^{2}$ was minimized, where $w=1 /\left[\sigma\left(F_{o}\right)\right]^{2}$ and $\left.\sigma\left(F_{o}\right)=\left(0.5 k I^{-1 / 2}\left\{[\sigma(I)]^{2}+0.02 I\right)^{2}\right\}^{1 / 2}\right)$; the intensity, I, is given by $\left(I_{\text {peak }}-I_{\text {background }}\right) \times($ scan rate $) ; 0.02$ is a factor to downweight intense reflections and to account for instrument instability and k is the correction due to Lp effects, absorption and decay; $\sigma(I)=$ $\left[\left(I_{\text {peak }}+I_{\text {background }}\right)^{1 / 2} \times(\right.$ scan rate $\left.)\right]$. The final $R=$ 0.0547 for 1772 reflections, with $w R=0.0607\left(R_{\text {all }}=\right.$ $0.0772, w R_{\mathrm{all}}=0.0651$) and a goodness of fit $=1.686$; the maximum $|\Delta / \sigma|<0.1$ in the final refinement cycle and the minimum and maximum peaks in the final ΔF map were -0.18 and 0.26 e \AA^{-3}, respectively. Differentiation between enantiomorphs could not be made on the basis of the X-ray diffraction results ($w R=0.0607$). The scattering factors for non-H atoms were taken from Cromer \& Mann (1968), with anomalous-dispersion corrections taken from the work of Cromer \& Liberman (1970); the scattering factors for H atoms were obtained from Stewart, Davidson \& Simpson (1965). Values used to calculate the linear absorption coefficient are from International Tables for X-ray Crystallography (1974, Vol. IV, p. 55).* Figures were generated using SHELXTL-Plus (Sheldrick, 1988). The positional and thermal parameters for non-H atoms are listed in Table 1, while the bond lengths and angles for the non- H atoms are listed in Table 2. The atom-labeling scheme is shown in Fig. 1. Other computer programs used in this work are listed in reference 11 of Gadol \& Davis (1982).

Related literature. Derivatives of 2-phenylcyclohexanol have been utilized as chiral auxiliaries in exerting stereochemical control of reaction products (Whitesell, Chen \& Lawrence, 1985; Whitesell \& Carpenter, 1987; Whitesell, Carpenter, Yaser \& Machajewski, 1990).

[^0]Table 1. Fractional coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for the non- H atoms of (1)

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{i} U_{i j} a_{i}{ }^{*} a_{i}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cl	$0 \cdot 2984$ (6)	0.1895 (6)	-0.0735 (2)	0.036 (2)
C2	0.3407 (5)	$0 \cdot 3262$ (5)	-0.1039 (2)	0.0341 (14)
C3	$0 \cdot 3902$ (5)	$0 \cdot 3160$ (5)	-0.1528 (2)	0.0376 (15)
C4	0.4207 (6)	$0 \cdot 1734$ (5)	-0.1797 (2)	0.043 (2)
C5	0.4447 (5)	0.0463 (5)	-0.14197 (15)	0.0341 (14)
C6	$0 \cdot 3098$ (6)	0.0458 (6)	-0.1040 (2)	0.039 (2)
C7	$0 \cdot 3207$ (6)	0.4708 (6)	-0.0769 (2)	0.045 (2)
C8	0.4731 (6)	-0.0966 (6)	-0.1705 (2)	0.042 (2)
C9	0.6288 (8)	-0.1081 (8)	-0.1946 (2)	0.056 (2)
C10	0.3709 (9)	-0.2017 (7)	-0.1751 (2)	0.057 (2)
N11	$0 \cdot 3831$ (4)	$0 \cdot 1821$ (5)	-0.02413 (13)	0.0373 (12)
C 12	0.3128 (5)	0.1751 (5)	0.0213 (2)	0.0320 (13)
013	0.1773 (3)	0.1725 (4)	0.02821 (12)	0.0466 (11)
014	0.4165 (3)	$0 \cdot 1684$ (3)	0.06123 (10)	0.0361 (9)
C15	$0 \cdot 3603$ (5)	0.1461 (5)	$0 \cdot 11346$ (15)	0.0336 (14)
C16	0.4127 (5)	-0.0049 (5)	$0 \cdot 13287$ (15)	0.0365 (15)
C17	0.3706 (6)	-0.0238 (6)	$0 \cdot 1902$ (2)	0.040 (2)
C18	0.4351 (7)	0.0995 (6)	$0 \cdot 2244$ (2)	0.047 (2)
C19	0.3804 (6)	$0 \cdot 2486$ (5)	$0 \cdot 2042$ (2)	0.046 (2)
C20	0.4229 (6)	0.2706 (6)	0.1478 (2)	0.041 (2)
C21	0.3559 (5)	-0.1328 (5)	$0 \cdot 1002$ (2)	0.0370 (15)
C22	$0 \cdot 2022$ (6)	-0.1464 (6)	0.0874 (2)	0.044 (2)
C23	$0 \cdot 1498$ (7)	-0.2696 (7)	0.0616 (2)	0.056 (2)
C24	$0 \cdot 2469$ (8)	-0.3798 (7)	0.0479 (2)	0.068 (2)
C25	$0 \cdot 4003$ (8)	-0.3699 (7)	0.0596 (2)	0.067 (2)
C26	0.4537 (7)	-0.2453 (6)	0.0850 (2)	0.050 (2)

Table 2. Bond lengths (\AA) and angles (${ }^{\circ}$) for the non- H atoms of (1)

1	2	3	1-2	1-2-3
C2	C1	C6	1.508 (7)	114.7 (4)
C6	Cl	N11	1.520 (7)	111.7 (4)
N11	Cl	C2	1.472 (6)	$110 \cdot 9$ (4)
C3	C2	C7	1.329 (6)	122.5 (4)
C3	C2	Cl		120.8 (4)
C7	C2	Cl	1.491 (7)	116.7 (4)
C4	C3	C2	1.487 (7)	123.8 (4)
C5	C4	C3	1.517 (6)	112.7 (4)
C6	C5	C8	1.536 (7)	$115 \cdot 7$ (4)
C6	C5	C4		107.4 (4)
C8	C5	C4	1.505 (7)	111.3 (3)
Cl	C6	C5		112.0 (4)
C9	C8	C10	$1.509(8)$	122.4 (5)
C9	C8	C5		114.2 (5)
C10	C8	C5	1.315 (9)	123.4 (5)
C12	N11	Cl	1.322 (5)	121.6 (4)
013	C12	014	$1 \cdot 207$ (5)	123.3 (4)
013	C12	N11		126.4 (4)
O14	C12	N11	1.373 (5)	110.3 (3)
C15	014	C12	1.442 (5)	118.0 (3)
C16	C15	C20	1.525 (6)	111.2 (3)
C16	C15	014		108.9 (3)
C20	C15	014	1.532 (7)	107.9 (4)
C17	C16	C21	1.526 (6)	111.6 (4)
C17	C16	Cl 5		109.9 (4)
C21	C16	C15	1.514 (6)	113.8 (3)
C18	C17	C16	1.528 (7)	112.4 (4)
C19	C18	C17	1.523 (7)	109.4 (4)
C20	C19	C18	1.507 (7)	111.4 (4)
C15	C20	C19		111.4 (4)
C22	C21	C26	1.399 (7)	118.2 (5)
C22	C21	C16		121.1 (4)
C26	C21	C16	1.388 (7)	120.6 (4)
C23	C22	C21	1.375 (8)	120.5 (5)
C24	C23	C22	1.361 (9)	120.5 (6)
C25	C24	C23	1.388 (10)	120.6 (6)
C26	C25	C24	1.385 (8)	119.0 (6)
C21	C26	C25		121.1 (6)

Fig. 1. View of (1) showing the atom-labeling scheme. Thermal ellipsoids are scaled to the 30% probability level. Methylene H atoms at C 4 and C 6 , methyl H atoms at C 7 and C 9 and all phenyl ring H atoms have been omitted for clarity. Other H atoms are represented as spheres of arbitrary size.

Financial support from the National Institutes of Health (GM-31750) and the Robert A. Welch Foundation (F-626) are gratefully acknowledged.

References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gadol, S. M. \& Davis, R. E. (1982). Organometallics, 1, 1607-1613.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1988). SHELXTL-Plus. Nicolet XRD, Madison, Wisconsin, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Whitesell, J. K. \& Carpenter, J. (1987). J. Am. Chem. Soc. 109, 2839-2840.
Whitesell, J. K., Carpenter, J., Yaser, H. K. \& Machajewski, T. (1990). J. Am. Chem. Soc. 112. Accepted for publication.

Whitesell, J. K., Chen, H.-H. \& Lawrence, R. M. (1985). J. Org. Chem. 50, 4663-4664.
Whitesell, J. K. \& Lawrence, R. M. (1986). Chimia, 40, 318-321.
Yaser, H. K. (1990). Masters thesis, Univ. of Texas at Austin, Austin, TX, USA.

Acta Cryst. (1991). C47, 1568-1570

Structure of $\mathbf{6} \alpha$-Chloro-3,20-dioxo-4-pregnen-17 α-yl Acetate

By Zdzislaw Wawrzak and Pawel Grochulski
Technical University of Łodz, Institute of Physics, ul. Wolczanska 219, 93-005, Łodz, Poland
Zdzislaw Galdecki
Technical University of Łodz, Institute of General Chemistry, ul. Zwirki 36, 90-924 Łodz, Poland
and Jane F. Griffin, Phyllis D. Strong and William L. Duax
Medical Foundation of Buffalo, Inc., 73 High Street, Buffalo, NY 14203, USA

(Received 8 October 1990; accepted 2 January 1991)

Abstract

C}_{23} \mathrm{H}_{31} \mathrm{ClO}_{4}, M_{r}=406 \cdot 95\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=13 \cdot 155$ (2), $b=13.397$ (2), $c=12 \cdot 369$ (2) \AA, $V=2179.9$ (9) $\AA^{3}, \quad Z=4, \quad D_{x}=1.24 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K \alpha)=0.71073 \AA, \quad \mu=2.05 \mathrm{~cm}^{-1}, \quad F(000)=$ $872, T=293 \mathrm{~K}, R=0.064, w R=0.063$ for 2828 observed reflections with $F_{o}>3 \sigma\left(F_{o}\right)$. Rings B and C have chair conformations and the D ring is in an intermediate sofa-half-chair conformation. Ring A assumes an intermediate sofa-half-chair conformation and is flat relative to the rest of the steroid skeleton. The progesterone side chain has a conformation typical for other 17α-ester steroids; the $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{O}(20)$ torsion angle is $-23 \cdot 0(5)^{\circ}$.

Experimental. Crystal with dimensions $0.2 \times 1.2 \times$ 1.4 mm , Nicolet $P 3$ diffractometer, cell dimensions
and Laue symmetry from 25 centered reflections (27 $<2 \theta<31^{\circ}$) checked with oscillation photographs, Mo $K \alpha$ radiation, Nb filtered, no monochromator, scan width $2 \cdot 4^{\circ}+1.04\left(2 \theta_{K \alpha 2}-2 \theta_{K \alpha 1}\right)$, scan speed from 3 to $30^{\circ} \mathrm{min}^{-1}$ in $2 \theta, 2 \theta_{\text {max }}=60^{\circ}, 0 \leq h \leq 19,0$ $\leq k \leq 19,0 \leq l \leq 18,4254$ reflections were measured using $\theta-2 \theta$ scan mode, 3588 of them were unique, $R_{\text {int }}=0.026$. Four standard reflections ($10,0,0 ; 080$; 006; 565) were measured every 196 reflections and varied in intensity by $\leq 5 \%$ during the data collection. Intensity corrections made with the DREAM program (Blessing, 1987).
Direct methods using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) revealed positions of all non-hydrogen atoms. The positional and anisotropic displacement parameters of all non-hydrogen atoms were refined by the full-

[^0]: * Tables of anisotropic thermal parameters, H-atom positional parameters, bond distances and angles involving the H atoms, torsion angles, structure factor amplitudes and a unit-cell packing diagram have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53894 (17 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

